Are deep neural nets “Software 2.0”?

Image from:

Recent blog posts by Andrej Karpathy at and Pete Warden at have caused a paradigm shift in the way I think about neural nets.  Instead of thinking of them as powerful machine learning tools, the authors  instead suggest that we should think of neural nets, and in particular, convolution deep nets, as ‘self-writing programs.’   Hence the term, “Software 2.0.”

It turns out that a large portion of real-world problems have the property that it is significantly easier to collect the data than to explicitly write the program. A large portion of programmers of tomorrow do not maintain complex software repositories, write intricate programs, or analyze their running times. They collect, clean, manipulate, label, analyze and visualize data that feeds neural networks.   — Andrej Karpathy,

I found this to be a dramatic reversal in my thinking about these techniques, but it opens up a deeper understanding and is much more intuitive.  The fact is that combinations of artificial neurons can be used to model any logical operation.  Therefore you can conceptualize training a neural net as searching programming space for an optimal program that behaves in the way you specify.  You provide the inputs and desired outputs, and the model searches for the optimal program.

This stands in contrast to the “Software 1.0” paradigm where the programmer uses her skill and experience to conceptualize the right combination of specific instructions to produce the desired behavior.   While it seems certain that Software 1.0 and 2.0 will co-exist for a long time, this new way of understanding deep learning is crucial and exciting, in my opinion.



Leave a Reply

Your email address will not be published.