# Five (easy) ways to start learning about convolution neural nets

### 1

Visualize them in real time with your own inputs (this is amazing!)

### 2

Watch a lecture by the “godfather” of neural nets,  Geoff Hinton.

### 3

Take a top-ranked online course on Deep Learning.

### 4

Learn the math behind them.

### 5

Code one yourself in python.

# Pathway Analysis Quick Start Tutorial for IPA

I’ve had a lot of questions from researchers on how to get started with Ingenuity Pathway Analysis (IPA).  I made a short video to address them:

# Beyond Benjamini-Hochberg: Independent Hypothesis Weighting (IHW) for multiple test correction

Multiple hypothesis testing is a critical part of modern bioinformatic analysis.  When testing for significant changes between conditions on many thousands of genes, for instance in an RNA-Seq experiment, the goal is maximize the number of discoveries while controlling the false discoveries.

Typically, this is done by using the Benjamini-Hochberg (BH) procedure, which aims to adjust p-values so that no more than a set fraction (usually 5%) of discoveries are false positives (FDR = 0.05). The BH method is better powered and less stringent than the more strict family-wise error rate (FWER) control, and therefore more appropriate to modern genomics experiments that make thousands of simultaneous comparisons.  However, the BH method is still limited by the fact that it uses only p-values to control the FDR, while treating each test as equally powered.

A new method, Independent Hypothesis Weighting (IHW), aims to take advantage of the fact that individual tests may differ in their statistical properties, such as sample size, true effect size, signal-to-noise ratio, or prior probability of being false.  For example, in an RNA-Seq experiment, highly-expressed genes may have better signal-to-noise than low-expressed genes.

The IHW method applies weights (a non-negative number between zero and one) to each test in a data-driven way.  The input to the method is a vector of p-values (just like BH/FDR) and a vector of continuous or categorical covariates (i.e., any data about each test that is assumed to be independent of the test p-value under the null hypothesis).

From the paper linked above, Table 1 lists possible covariates:

Application Covariate

Differential expression analysis Sum of read counts per gene across all samples [12]
Genome-wide association study (GWAS) Minor allele frequency
Expression-QTL analysis Distance between the genetic variant and genomic location of the phenotype
ChIP-QTL analysis Comembership in a topologically associated domain [16]
t-test Overall variance [9]
Two-sided tests Sign of the effect
Various applications Signal quality, sample size

In simplified form, the IHW method takes the tests and groups them based on the supplied covariate.  It then calculates the number of discoveries (rejections of the null hypothesis) using a set of weights. The weights are iterated until the method converges on the optimal weights for each covariate-based group that maximize the overall discoveries.  Additional procedures are employed to prevent over-fitting of the data and to make the procedure scale easily to millions of comparisons.

The authors of the method claim that IHW is better powered than BH for making empirical discoveries when working with genomic data.  It can be accessed from within Bioconductor.

# Unix one-liner to convert VCF to Oncotator format

Here is a handy unix one-liner to process mutect2 output VCF files into the 5 column, tab-separated format required by Oncotator for input (Oncotator is a web-based application that annotates human genomic point mutations and indels with transcripts and consequences). The output of Oncotator is a MAF-formatted file that is compatible with MutSigCV.
``` #!/bin/bash FILES='*.vcf.gz' for file in \$FILES do zcat \$file | grep -v "GL000*" | grep -v "FILTER" | grep "PASS" | cut -d\$'\t' -f 1-5 | awk '\$3=\$2' | awk '\$1="chr"\$1' > \$file.tsv done```

Breaking this down we have:

“zcat \$file” :  read to stdout each line of a gzipped file

“grep -v “GL000*” :  exclude any variant that doesn’t map to a  named chromosome

“grep -v “FILTER” : exclude filter header lines

“grep “PASS””:  include all lines that pass mutect2 filters

“cut -d\$’\t’ -f 1-5”  : cut on tabs and keep fields one through five

“awk ‘\$3=\$2’ :  set column 3 equal to column 2, i.e., start and end position are equal

“awk \$1=’chr’\$1″” : set column one equal to ‘chr’ plus column one (make 1 = chr1)

# A Unix one-liner to scrape GI numbers from a SAM file

I recently had a situation where I needed to scrape out all of the GI numbers from a SAM alignment file.  My first instinct was to turn to python to accomplish this, but I forced myself to find a command line tool or set of tools to quickly do this task as a one-liner.  First, here is the format of the first two lines of the file:

…..

HWI-D00635:61:C6RH0ANXX:4:1101:3770:8441 0 gi|599154892|gb|EYE94125.1| 1066 255 41M * 0 0 SNPDEMDGNILPWMVHLKRMALEVLKHLWSSKLAAFFTLSE * AS:i:88 NM:i:0 ZL:i:2534 ZR:i:217 ZE:f:3.9e-15 ZI:i:100 ZF:i:-2 ZS:i:125 MD:Z:41

HWI-D00635:61:C6RH0ANXX:4:1101:3770:8441 0 gi|115387347|ref|XP_001211179.1| 1065 255 41M * 0 0 SNPDEMDGNILPWMVHLKRMALEVLKHLWSSKLAAFFTLSE * AS:i:77 NM:i:8 ZL:i:1670 ZR:i:188 ZE:f:8.9e-12 ZI:i:80 ZF:i:-2 ZS:i:125 MD:Z:1Y3V3V11F11SSY3A1

….

You can see that what I want is the information between the pipes in the field “gi|#########|” .   Here is how I solved this with a bash script:

``` #!/bin/bash for file in *.sam do echo \${file} cat \${file} | egrep -o  "\|\S*\|(\S*)\|" | sed 's/|/,/g' | cut -f 2 -d ',' > \${file}.out done```

To unpack this briefly, the “cat” command outputs each line of the file to stdout, which is redirected to “egrep.”   Egrep looks for the regular expression “\|\S*\|(\S*)\|”.   This expression searches for a pipe, followed by any number of characters, with another pipe, then more characters, then another pipe.  The pipes are escaped with a backslash “\”.

The next step is to pipe to “sed”, which takes the incoming stream and replaces the pipes with commas.  This output is sent to “cut”, which uses the commas as delimiters, and takes the second field.

There are probably shorter ways to do this (cutting on pipes, for example), but already attempting this at the command line saved me a lot of time over coding this in python.

According to a new paper, basically, no.   Actually that is an oversimplification, but the authors find that quality trimming of RNA-Seq reads results in skewed gene expression estimates for up to 10% of genes.   Furthermore, the authors claim that:

“Finally, an analysis of paired RNA-seq/microarray data sets suggests that no or modest trimming results in the most biologically accurate gene expression estimates.”

First, the authors show how aggressive trimming affects mappability in Figure 2:

You can see that as the threshold becomes more severe (approaching 40), the number of RNA-Seq reads remaining drops off considerably, and the overall % mappability increases.  Overall, you’d think this would be a good thing, but it leads to problems as shown in Figure 4 of the paper:

Here you can see in (a) how increasingly aggressive trimming thresholds lead to increased differential expression estimates between untrimmed and trimmed data (red dots).  Section (b) and (c) also show that the number of biased isoforms and genes, respectively, increases dramatically as one approaches the Q40 threshold.

One way to correct this bias is to introduce length filtering on the quality-trimmed RNA-Seq reads.  In Figure 5, the authors show that this can recover much of the bias in gene expression estimates:

Now in (b-d) it is clear that as the length filter increases to 36, the number of biased expression estimates goes rapidly down.   There seems to be a sweet spot around L20, where you get the maximum decrease in bias while keeping as many reads as possible.

Taken together, the authors suggest that aggressive trimming can strongly bias gene expression estimates through the incorrect alignment of short reads that result from quality trimming.  A secondary length filter step can mitigate some of the damage.   In the end, the use of trimming depends on your project type and goals.  If you have tons of reads, some modest trimming and length filtering may not be too destructive.  Similarly, if your data are initially of low quality, trimming may be necessary to recover low-quality reads.  However, you should be restrained in your trimming and look at the resulting length distributions if possible before deciding on quality thresholds for your project.

# Filtering variants for cancer mutational signature analysis

Recently, I’ve been working to help prepare a manuscript on Vestibular Schwannomas (VS), a type of benign cancer of the myelin-forming cells along the nerves of the ear.  I’ve been thinking a lot about strategies for filtering exome variant calls to feed into mutational signature analysis.

Mutational signatures are important because they describe the types of mutational processes operating on the genome of the tumor cells.  Many of these processes are known (see the COSMIC database), however, some are entirely novel.  The variants that are used for calculating such signatures are somatic in nature, and have to be carefully curated from the raw variant calls that you get from a pipeline like GATK.

Looking at the existing literature, I find that there is no common or “best practices” methodology for filtering variants in whole exome data.  Some groups are very stringent, others less so.  The first step in most cases is to just subtract normal variant calls from tumor in most cases.  However, there are further filtering steps that should be undertaken.

If I had to describe some overall commonalities in the literature approaches to somatic variant filters, it could include:

1) removing variants that are present in dbSNP or 1000genomes or other non-cancer exome data
2) taking only variants in coding regions (exons) or splicing sites
3) variants must appear in more than X reads in the tumor, and fewer than X reads in the normal (generally ~5 and ~2, respectively)
4) subtraction of “normals” from “tumor” (either pooled normals, or paired)
5) variant position must be covered by a minimum depth (usually > 10X)
6) throwing away reads from low mapping quality (MQ) regions

Some papers only consider non-synonymous variants, but for mutational signatures, to me it makes sense to take all validated variants (especially in exome data because you are starting with fewer raw variant calls than whole genome data).

As far as actual numbers of variants that are “fed” into the mutational signature analysis, most papers do not report this directly (surprisingly).  If you dig around in the SI sections, sometimes you can find it indirectly.

It looks like, generally, the number of variants is somewhere around 10,000 for papers dealing with specific tumor types (not pan-cancer analyses of public databases). Several papers end up with ~1000 variants per tumor (ranging from 1,000 up to 7,000).  So with 10 tumors sequenced, that would be 10,000 filtered, high-confidence SNVs.

If you’re working on exome mutational signature analysis and you have your own filtering criteria, I’d love for you to share it in the comments.