Breakthrough advances in 2018 so far: flu, germs, and cancer

2018 medicine breakthrough review!

So far this year has seen some pretty important research breakthrough advances in several key areas of health and medicine.  I want to briefly describe some of what we’ve seen in just the first few months of 2018.

Flu

A pharmaceutical company in Japan has released phase 3 trial results showing that its drug, Xofluza, can effectively kill the virus in just 24 hours in infected humans.  And it can do this with just one single dose, compared to a 10-dose, three day regimen of Tamiflu. The drug works by inhibiting an endonuclease needed for replication of the virus.

Germs

It is common knowledge that antibiotics are over-prescribed and over-used.  This fact has led to the rise of MRSA and other resistant bacteria which threaten human health.  Although it is thought that bacteria could be a source of novel antibiotics since they are in constant chemical warfare with each other, most bacteria aren’t culture-friendly in the lab and so researchers haven’t been looking at them for leads.  Until now.

Malacidin drugs kill multi-drug resistant S. Aureus in tests on rats.

By adopting whole genome sequencing approaches to soil bacterial diversity, researchers were able to screen for gene clusters associated with calcium-binding motifs known for antibiotic activity.   The result was the discovery of a novel class of lipo-peptides, called malacidins A and B.  They showed potent activity against MRSA in skin infection models in rats.

The researchers estimate that 99% of bacterial natural-product antibiotic compounds remain unexplored at present.

Cancer

2017 and 2018 have seen some major advances with cancer treatment.   It seems that the field is moving away from the focus on small-molecule drugs towards harnessing the patient’s own immune system to attack cancer.  The CAR-T therapies for pediatric leukemia appear extremely promising.  These kinds of therapies are now in trials for a wide range of blood and solid tumors.

A great summary of the advances being made is available here from the Fred Hutchinson Cancer Research Center.   Here is how Dr. Gilliland, President of Fred Hutch, begins his review of the advances:

I’ve gone on record to say that by 2025, cancer researchers will have developed curative therapeutic approaches for most if not all cancers.

I took some flak for putting that stake in the ground. But we in the cancer research field are making incredible strides toward better and safer, potentially curative treatments for cancer, and I’m excited for what’s next. I believe that we must set a high bar, execute and implement — that there should be no excuses for not advancing the field at that pace.

This is a stunning statement on its own;  but made even more so because it is usually the scientists in the day-to-day trenches of research who are themselves the most pessimistic about the possibility of rapid advances.

Additionally, an important paper came out recently proposing a novel paradigm for understanding and modeling cancer incidence with age.  For a long time the dominant model has been the “two-hit” hypothesis which predicts that clinically-observable cancers arise when a cell acquires sufficient mutations in tumor-suppressor genes to become a tumor.

This paper challenges that notion and shows that a model of thymic function decline (the thymus produces T-cells) over time better describes the incidence of cancers with age.   This model better fits the data and leads to the conclusion that cancers are continually arising in our bodies, but it is our properly functioning immune system that roots them out and prevents clinical disease from emerging.  This model also helps explain why novel cancer immunotherapies are so potent and why focus has shifted to supporting and activating T-cells.

Declining T cell production leads to increasing disease incidence with age.

 

New paper out: metagenomics study of poultry production environments

I am happy to say that myself and my collaborators in the Department of Occupational and Environmental Health here at the University of Iowa have had our recent work on the bacterial composition of poultry bioaerosols (i.e., the dust that poultry workers breath during their tasks) published in Microbial Biotechnology.   

The key figure from this work is the following heat map that illustrates the top taxa that are common to all 21 samples:

mbt212380-fig-0003

What is remarkable about whole-genome shotgun metagenomics is that we are not only surveying bacterial DNA, but also viral, fungal, archaeal, and eukaryotic DNA in one experiment.  You can see from the figure that certain viruses are found in all samples, but it is bacteria, particularly Lactobacillus and Salinicoccus, that are the most abundant.

Stay tuned because we will have a paper coming out soon on the fungal composition of these samples as well.   In the case of this paper, and our next manuscript, it is the first time whole-genome shotgun metagenomics has been applied to the field of environmental health in poultry environments.

 

Mutational signatures in cancer with DNA-Seq

A recent collaboration with a clinician here at UI hospital and clinics introduced me to the idea of mutational signatures in cancer.  Characterizing mutational signatures is made possible by the falling cost and increasing accuracy of whole-genome sequencing methods.  Tumors are sequenced across the entire genome and the catalog of somatic mutations (i.e, SNPs) is used to compute the mutational signatures of a tumor’s genome.

The idea is that the collection of somatic mutations found in a tumor  are the result of a variety of defective DNA-repair or DNA-replication machinery combined with the action of known or unknown mutagens and environmental exposures.  The processes operate over time and leave a “footprint” in the tumor DNA that can be examined.  These sum of all of the mutational processes operating within a tumor cell is a distinct mutational “signature” that differs by tumor types.

For example, in lung cancer, the bulk of somatic mutations are C>A transversions resulting from chronic exposure to tobacco smoke.  In melanoma, the predominant mutation type is C>T and CC>TT at dipyrimidines, a mutation type associated with UV-light exposure.  And in colorectal cancer, defective DNA mismatch repair contributes the majority of the mutations.

Mutational signatures of a cancer by the operation of several mutational processes over time.
Mutational signature of a cancer by the operation of several mutational processes over time. From http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3990474/figure/fig0005/. Used under CC License BY 3.0.

A recent paper in Nature has formalized this notion of mutational signatures in tumors and provided a mathematical framework (written in MatLab) for assessing how many and which signatures are operational within an uncharacterized tumor type (generally there between 2 and 6 processes).

In the paper, the authors analyzed almost 5 million somatic cancer SNPs and identified 21 unique signatures of mutational processes through a mathematical process of deconvolution, followed by experimental validation.  A curated catalog of the most current signatures based on available sequence data can be found at the COSMIC database.

In part 2 of this post, I’ll go into more detail on the mutational signatures and link to some python code I’ve written to help get flat-file lists of SNPs into the correct form for easy input into the MatLab framework.